
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Road Object Detection

ABU ZAHID BIN AZIZ∗ and MOKSHAGNA SAI TEJA KARANAM∗, School of Computing, University of

Utah, USA

Road object detection is an important component of autonomous driving systems, adding signicantly to total navigation eciency

and road safety. Deep learning approaches have made signicant advances in this subject in recent years, with two major architectures

being single-stage (YOLO) and multi-stage (Faster-RCNN). We give a full comparison of these two cutting-edge techniques in the

context of road object identication in this work. To ensure a fair and reliable comparison, we rst present a comprehensive review

of the fundamental principles and functioning mechanisms of both the YOLOv5 and Faster-RCNN models. We then assess their

performance on a large-scale benchmark dataset with a variety of situations and levels of complexity. Our research shows that the

single-stage YOLOv5 model has faster processing speeds and reduced computational requirements, making it appropriate for real-time

deployment on embedded systems. The multi-stage Faster-RCNN model, on the other hand, has lower detection accuracy and higher

false positive rates due to its more complicated architecture and region proposal methods. The codes for this project is publicly

available here: https://github.com/mahimoksha/ECE6960-Deep_Learn_Img_Analysis_project

Additional Key Words and Phrases: YOLO V5, Faster-RCNN, style, Object Detection, Comparision, Mean Average Precision(MAP)

1 INTRODUCTION

Road object detection is a fundamental task in the development of advanced driver assistance systems (ADAS) and

autonomous vehicles (AVs), playing a crucial role in ensuring safety, navigation eciency, and real-time decision-making.

With the advent of deep learning techniques, signicant progress has been made in the eld of computer vision, leading

to the emergence of various object detection models that have been widely adopted for road object detection. Among

these models, single-stage architectures like You Only Look Once (YOLO) and multi-stage architectures such as Faster

Region-based Convolutional Neural Networks (Faster-RCNN) have gained considerable attention due to their impressive

performance on benchmark datasets. The primary aim of this paper is to provide a comprehensive comparison between

these two state-of-the-art approaches, assessing their strengths and weaknesses in the context of road object detection

and oering guidelines for selecting the most suitable model for dierent applications.

If we briey delve into the key dierences between single-stage andmulti-stage object detectionmodels, we notice that

single-stage models, such as YOLO, streamline the detection process by directly predicting object classes and bounding

box coordinates in a single pass through the neural network. This results in reduced computational complexity and

faster processing times, making them well-suited for real-time applications. On the other hand, multi-stage models, like

Faster-RCNN, employ a hierarchical approach to object detection, generating region proposals and subsequently rening

them through additional network layers. This multi-step process has a cost of increased computational requirements

and longer processing times. Given these fundamental dierences, it is essential to thoroughly evaluate and compare

the performance of YOLO and Faster-RCNN in various scenarios and environments to gain a better understanding of

their suitability for road object detection in autonomous driving systems.

∗Both authors contributed equally to this project.

Authors’ address: Abu Zahid Bin Aziz, u1410993@utah.edu; Mokshagna Sai Teja Karanam, u1418261@umail.utah.edu, School of Computing, University

of Utah, Salt Lake City, Utah, USA, 84112.

© 2023

DL for Image Analysis - Project 1



53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Aziz (u1410993) and Karanam (u1418261)

Throughout the evolution of the YOLO architecture, several advancements and optimizations have been introduced,

from the initial version (v1) to the version we used in this work, YOLOv5. In YOLOv1, the pioneering concept of single-

stage object detection was introduced, which performed detection by dividing the input image into a grid and assigning

each cell the task of predicting a xed number of bounding boxes and class probabilities. However, YOLOv1 suered

from limited detection accuracy, particularly for smaller objects, and the inability to capture contextual information.

To address these issues, YOLOv2 introduced anchor boxes and batch normalization, improving the model’s accuracy

and training stability. YOLOv3 further enhanced the architecture by incorporating a multi-scale feature pyramid and

adopting the Darknet-53 backbone, which signicantly increased the model’s ability to detect objects across various

scales and resolutions. YOLOv4, a subsequent iteration, introduced a series of optimizations that aimed at striking a

balance between accuracy and speed. This version combined the best features from earlier versions and integrated

additional techniques, such as the Bag of Freebies (BoF) and Bag of Specials (BoS), to improve the model’s overall

performance. Moreover, YOLOv4 employed the CSPDarknet53 as its backbone, which further enhanced the detection

capabilities while maintaining real-time processing speed.

Finally, YOLOv5, the version used in this paper, builds upon the advancements of its predecessors by incorporating

architectural improvements, such as the introduction of the Focus layer, which merges information from adjacent pixels

to reduce the initial feature map size. Additionally, YOLOv5 employs an updated backbone, the CSPNet, and benets

from the integration of LeakyReLU and Mosaic data augmentation. These enhancements collectively contribute to the

superior performance of YOLOv5 in terms of detection accuracy and processing speed, making it an ideal candidate for

the comparison with Faster-RCNN in this study.

2 METHODS

2.1 YOLO

YOLOv5 [3], the fth version of the YOLO (You Only Look Once) object detection model, builds upon the strengths of

its predecessors while introducing several architectural improvements and optimizations to achieve better performance

in terms of detection accuracy and processing speed.

• Backbone: YOLOv5 employs a CSPNet-based backbone, which stands for Cross-StageHierarchical Network. The

CSPNet backbone enhances the gradient ow and network scalability, allowing for ecient feature extraction

and improved learning capability.

• Neck: The neck of the YOLOv5 architecture consists of PANet (Path Aggregation Network) and BiFPN (Bidirec-

tional Feature Pyramid Network). PANet enables ecient feature fusion across various scales, while BiFPN

allows for bidirectional cross-scale connections, further improving the model’s capability to detect objects of

dierent sizes and at varying resolutions.

• Head: The head of the YOLOv5 model is responsible for predicting bounding box coordinates, objectness

scores, and class probabilities. It utilizes a combination of convolutional layers and anchor boxes to generate

predictions at three dierent scales. These predictions are then decoded to produce the nal output in the form

of bounding boxes and class labels for each detected object.

• Focus Layer: YOLOv5 introduces the Focus layer at the beginning of the network. This layer combines

information from adjacent pixels in the input image, reducing the size of the initial feature map while retaining

crucial spatial information. The Focus layer contributes to improved eciency and model performance.

DL for Image analysis - Project



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Road Object Detection 3

• Activation Functions: YOLOv5 uses the LeakyReLU activation function in its architecture, which helps in

mitigating the vanishing gradient problem, leading to better training stability and faster convergence.

• Data Augmentation: YOLOv5 incorporates the Mosaic data augmentation technique, which combines four

training images into a single mosaic image. This technique exposes the model to a more diverse range of object

scales, orientations, and lighting conditions during training, ultimately improving its generalization capabilities.

• Loss Function: YOLOv5 utilizes the CIoU (Complete Intersection over Union) loss function, which takes into

account the geometric and aspect ratio dierences between the predicted and ground truth bounding boxes,

leading to improved localization performance.

These architectural improvements and optimizations collectively contribute to the superior performance of YOLOv5

in terms of object detection accuracy and processing speed, making it a competitive choice for various object detection

tasks, including road object detection in autonomous driving systems.

2.2 Faster RCNN

Faster R-CNN [1] is a state-of-the-art deep learning approach for object detection, which combines Region Proposal

Networks and object detection into a single end-to-end trainable network. In this paper, we present a detailed analysis

of the Faster R-CNN approach for the proposed task Road Object Detection.

The architecture of the Faster R-CNN model has its backbone network, region proposal network, and object detection

network. We then discuss the training process for Faster R-CNN, i.e loss functions and learning rate scheduler. The

Region Proposal Network (RPN) is a fully convolutional neural network that is capable of predicting regions of interest

(RoIs) or object proposals within an image. Upon receiving an image as input, the RPN generates a set of object proposals,

each represented by a bounding box and a corresponding score indicating the probability of the proposal containing an

object of interest.

Subsequently, the object detection network utilizes these proposals as input to perform classication and renement,

ultimately resulting in the nal detection results. The utilization of RPN allows the model to share computations

between the region proposal and object detection stages, thereby enhancing the eciency and speed of the model

compared to previous approaches.

We have done some ablation studies by experimenting with several architectures for backbone networks the best of

them are as follows:

2.2.1 ResNet-50. ResNet-50 [4] is a widely used deep convolutional neural network architecture that has shown

exceptional performance in various computer vision tasks, including image classication and object detection. As the

backbone network, ResNet-50 serves as the feature extractor for Faster R-CNN.

It takes an input image and processes it through a series of convolutional layers, enabling the extraction of high-level

features. These features are essential for accurately detecting and localizing objects within the image. It allows the

network to eectively learn complex representations.

To incorporate ResNet-50 into Faster R-CNN, the model is initialized with pre-trained weights which are obtained

from training ResNet-50 on the ImageNet dataset. This initialization process allows the network to leverage the

knowledge gained from a large-scale image classication task.

Furthermore, the model is ne-tuned using the existing dataset specic to object detection. The outcomes yielded by

this approach notably outperform other backbone frameworks.

The results on Held out data which is trained on ResNet-50 are seen in Results section.

DL for Image analysis - Project



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Aziz (u1410993) and Karanam (u1418261)

2.2.2 MobileNet-v2. I have done another ablation study where changing the backbone architecture to other pretrained

model i.e Mobile Net-v2. MobileNetV2 [2] is a lightweight neural network architecture that has been specically

designed embedded vision applications.

As the backbone network similar to ResNet-50, MobileNetV2 serves as the feature extractor. As we are using pretrained

model, the image will pass through the network with xed weights which signicantly reduce the computational

complexity and model size compared to traditional convolutional layers and netune the model in similar fashion to

above study.

By using pretrained weights it enables to leverage knowledge learned to generalize well for object detection tasks.

As the dataset is very high , this lightweighted architecture MobileNetv2 will be useful for comparision as it can

work well on limited computational resources.

2.2.3 VGG-19. The mode VGG-19 [6] is composed of 19 layers, which has a series of convolutional layers followed by

subsequent max pooling operations. With small receptive elds compared to other pretrained ImageNet Models, these

layers eectively capture intricate details from the input image.

VGG-19 is a relatively large and computationally expensive network compared to MobileNetv2. It can provide

accurate feature representations, it is little bit slower in inference compared to other pretrained backbones.

On Overall comparision to all the dierent backbone architectures in Faster-RCNN,

As ResNet 50 introduces skip connections which will keep feeding input information and control the weights. The

feature vector produces a xed-size representation regardless of the input’s spatial dimensions. This simplies the

model, reduces the number of parameters, and improves computational eciency.

MobileNetV2 is a lightweight nature makes it easier to adapt and ne-tune for specic tasks.

VGG19 is a slighlt complex model is inference which takes some extra time to give results.

All models are failing in certain scenarios that is discussed in results sections.

3 EXPERIMENTS

3.1 Dataset

The images in this Dataset are the frames at the 10th second in the trac videos. The split of train, validation, and test

sets are the same with the whole video set. They are used for object detection, derivable area, lane marking. There are a

total of 10 classes (objects) which are pedestrian, rider, car, truck, bus, train, motorcycle, bicycle, trac light, trac sign.

There a total of 31105 train images with labels, 6496 validation images with labels. There is a held out test set which we

have validated with the best model. The results are displayed below.

3.2 Learning Protocol

3.2.1 Faster-RCNN. For Faster-RCNN We use the GPU NVIDIA RTX A5000 and used Mean Average Precision metric

from the torchmetrics library which predicted boxes and classes have to be in Pascal VOC format (xmin-top left,

ymin-top left, xmax-bottom right, ymax-bottom right). used Adam optimizer and a learning rate of 0.001 for every

study with a StepLR learning rate scheduler. every model is trained in 25 epochs to keep the fair comparision. The

internal lters of for all the dierent studies architecture are 64, 128, 512 and the aspect ratio is 0.5, 1.0, 2.0. the region

of interest pooler has the output size of 5 and sampling ratio as 2. From the graphs we understood that after certain

epochs the MAP is becoming constant in most of the studies.

DL for Image analysis - Project



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Road Object Detection 5

Table 1. Performance comparison between the models used in this project

Models MAP Inference Time (seconds)

Faster-RCNN-VGG 0.1005 0.075699

Faster-RCNN-ResNet 0.1756 0.07245388

Faster-RCNN-Mobilenetv2 0.1445 0.051901

YOLOv5 0.365 0.007

3.2.2 YOLOv5. In our experiments, we trained the YOLOv5 model using the Stochastic Gradient Descent (SGD)

optimizer with an initial learning rate of 0.01, momentum of 0.937, and weight decay of 5e-4. The model’s loss function

comprised a combination of Generalized Intersection over Union (GIoU) loss with a gain of 0.05, classication (cls) loss

with a gain of 0.58, and objectness (obj) loss with a gain of 1.0. The cls and obj losses employed Binary Cross-Entropy

(BCE) with positive weights of 1.0. During training, we utilized an Intersection over Union (IoU) threshold of 0.20 and

an anchor-multiple threshold of 4.0. The focal loss gamma was set to 0.0.

For data augmentation, we applied a series of transformations, including HSV color space adjustments with hue,

saturation, and value (brightness) factors of 0.014, 0.68, and 0.36, respectively. Additionally, we incorporated image

rotation, translation, scaling, and shearing with degrees set to 0.0, translation factor at 0.0, scaling gain of 0.5, and

shearing degrees at 0.0. These augmentations contributed to the model’s robustness by exposing it to a diverse range of

object appearances and variations during the training process.

The YOLOv5 model was trained for 200 epochs with a batch size of 32 and an input image size of 640x640 pixels. This

training protocol allowed the model to learn and adapt to various road object detection scenarios, ultimately yielding a

high-performance detection system suitable for comparison with the Faster-RCNN model.

3.3 Results

3.3.1 Faster RCNN. The MobileNet model required a training time of 14.5 hours, and during inference, it took an

average of 0.051901 seconds to process an image.

In contrast, the ResNet model took 33 hours and 55 minutes to train the complete dataset. For inference, it took an

average of 0.07245388 seconds to obtain results for an image.

Similarly, the VGG architecture took 30 hours and 55 minutes for training the entire dataset. During inference, it

took an average of 0.075699 seconds to obtain results for an image.

DL for Image analysis - Project



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Aziz (u1410993) and Karanam (u1418261)

Mean Average Precision across Faster RCNN with diferent backbone architectures

From the above plot we can see that Resnet has signicant dierence compared to other backbones. we can observe

that after certain number of epochs the metric becomes constant with very less variations maybe this is because the

model is stuck in a local minima or a saddle point.

The following are the results with the best models on the test dataset:

Resnet-50

VGG-19

MobileNet-V2

DL for Image analysis - Project



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Road Object Detection 7

From these results we can see that there are some cases where VGG is not able to nd the car infront of the camera

and resnet is not able to nd the pedestrian. where as the mobile net is able to classify both as expected but not able to

nd smaller objects.

3.3.2 YOLO. The YOLOv5 model training took around 20 hours where 70000 images were used in training, 10000 in

validation and 20000 in testing. The GIoU and objections loss is shown in left two columns in the gure below. We have

plotted the precision, recall and mean average precision metric on the validation data which is shown in the rightmost

two columns in the gure below.

Here are some sample predictions of the trained YOLOv5 model:

We can see that the performance of YOLOv5 models are much better in terms of accuracy and inference speed than

the Faster-RCNN models.

DL for Image analysis - Project



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Aziz (u1410993) and Karanam (u1418261)

4 CONCLUSION

From this project we learned how to tackle object detection problem , the preprocessing methods, using state of the art

object detection problems like YOLO, Faster-RCNN with dierent bottlenecks. There is still room for improvement

interms of accuracy for this task. In future this work can be extended and debugged as follows:

• We conducted experiments on pretrained backbone networks for Faster-RCNN. It is worth considering training

the model from scratch, without relying on default weights and also can train on custom architectures which

gives better bottle neck, as this approach may yield improved feature extractors for the object detection problem.

• Other metrics, such as mean average recall and others, can be utilized to assess the performance of the

aforementioned models and determine areas where the model is underperforming at a granular level, specically

in terms of its weights.

• It might be good to identify the Average precision on smaller objects and larger objects separately as introduced

in COCO dataset [5] Object detection model.

In this project, we conducted a comparative analysis of YOLO and Faster-RCNN models, employing various ablation

studies. Overall, YOLO outperformed Faster-RCNN signicantly in this scenario, demonstrating superior capability in

identifying smaller objects. On the other hand, Faster-RCNN exhibited higher false positive rates. Given that YOLOv5

was developed after Faster-RCNN, it incorporates modular approaches and optimizations that could potentially enhanced

object classication and detection.

REFERENCES

[1] Xinlei Chen and Abhinav Gupta. 2017. An implementation of faster rcnn with study for region sampling. arXiv preprint arXiv:1702.02138 (2017).

[2] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017.

Mobilenets: Ecient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017).

[3] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, Yonghye Kwon, Kalen Michael, Jiacong Fang, Zeng Yifu, Colin Wong, Diego Montes,

et al. 2022. ultralytics/yolov5: v7. 0-YOLOv5 SOTA Realtime Instance Segmentation. Zenodo (2022).

[4] Brett Koonce and Brett Koonce. 2021. ResNet 50. Convolutional Neural Networks with Swift for Tensorow: Image Recognition and Dataset Categorization

(2021), 63–72.

[5] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco:

Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V

13. Springer, 740–755.

[6] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

(2014).

DL for Image analysis - Project


